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Harmonic Balance Finite Element method combined with homogenization method is used to model lamination stack. The Harmonic 

Balance gives directly the steady-state solution and the homogenization method reduces the number of unknowns.  The numerical 

model takes into account the nonlinear magnetic behavior and the electric conductivity. The results of the proposed method are 

compared with those obtained from a classic approach.   
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I. INTRODUCTION 

ron cores in electrical devices are usually made of 

lamination stack. Simulating such devices and modeling 

eddy currents in each separated lamination using finite 

element method (FEM) is computationally expensive due to 

the spatial discretization on the scale of individual lamination. 

Homogenization methods offer a good approximation, by 

replacing the stacked region with an equivalent homogenous 

medium. Indeed, it can greatly reduce the size of the mesh. 

Homogenization methods are usually combined with a time 

stepping finite element method (TS-FEM) [1][2]. In most 

electrical engineering applications, the steady-state solution is 

usually sought. With a time stepping scheme, a lot of periods 

could be required in order to obtain the steady-state solution. 

Thus, the computation time is expensive especially in the case 

of a large transient state. To tackle this issue, the harmonic 

balance approach (HB) combined with the FEM (HB-FEM) 

can be investigated in order to compute directly the steady of 

the solution. The HB is based on the expansion of the solution 

as a Fourier series [3][4].  

The HB was introduced in the late 1980’s to analyze 

electromagnetic field problems [5], where the HB method has 

been combined with FEM. In [6] we have proposed a HB-

FEM applied to lamination stack.  

In this communication, the HB-FEM combined with a 

homogenization method (HB-FEM-H) is developed to 

simulate a laminated iron core. The steel sheets are modelled 

by a nonlinear magnetic behaviour and a linear isotropic 

electric conductivity. The results from the HB-FEM-H are 

compared with those obtained from the TS-FEM, TS-FEM 

homogenization (TS-FEM-H) and the HB-FEM.   

II.  NON-LINEAR MAGNETO-QUASISTATIC PROBLEM 

We consider a lamination of thickness d(-d/2≤y≤-d/2) that 

carries the magnetic flux density B and magnetic field H along 

the z axis. Consequently, the axis x is the direction of the 

eddy-current loops generated by the variation of B with the 

approximation of neglecting the edge effect (Fig. 1). 

 

 
Fig. 1. Variation of B, H and J throughout lamination thickness. 

To study a lamination stack, a magneto-quasistatic problem 

can be solved using the vector potential A. In this case, the 

magnetic flux density B and the electric field E can be written 

such as B=curlA+NΦ and E=-∂tA-∂tKΦ with Φ the imposed 

magnetic flux and NΦ and KΦ the source fields [7] such as 

curlK=N. Using a the fixed point approach, the nonlinear 

behavior of the ferromagnetic material can be expressed by 

H=νfpB+Hfp(B) with νfp a constant and Hfp(B) a virtual mag-

netization [8]. 

Considering a heterogeneous lamination stack, the equation to 

be solved is 

 
curl(νfpcurlA)+σ∂tA=-curl(νfpcurl KΦ) 

- σ∂tKΦ-curl(Hfp(B)) 

(1) 

The homogenization method used is based on a spatial 

polynomial expansion of the magnetic flux density 

Bz(y,t)=∑ 𝛼𝑖(𝑦)𝐵𝑖(𝑡)
𝑛
𝑖=0 , where the polynomial basis functions  

α1(y)=1, α2(y)=-(1/2)+6(y/d)
2
,..., are orthogonals [1][2]. The 

homogenized formulation can be obtained combining the 

vector expansion of Bz(y,t) for n=2 and the equation (1): 

 

curl(νfpcurlA0)+
   

  
∂tcurlA0-

   

 0
∂tB2= 

curl(νfpcurl KΦ)-(ν(B)-νfp)curlA0 

νfpB2-
   

 0
∂tcurlA0+

   

  0
∂t B2=-(ν(B)-νfp) B2 

(2) 

with B0=curlA0 the averaged value of the magnetic flux 

density.  Using a spatial semi-discretisation of A, A0  and B2 , 

the system of ordinary differential equations to solve 

respectively for the equation (1) and (2) can be written in a 

condensed form: 

 Nx(t)+M
  ( )

  
=F(t)-Mfp(x(t)) (3) 

Where the vector x(t) contains the discrete values of A for the 
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equation  (1)  and A0, B2  for the equation (2).  N and M are 

square matrices, F(t) is the source vector and Mfp(x(t)) the 

vector composed of entries depending on the solution
 
x(t). 

Applying the HB-FEM, the vector x(t) is expanded as a 

complex Fourier series with N harmonics 

 x(t)  ̃Re(X0+∑    
     

 = ) (4) 

With   the angular frequency, X0  the DC-component and    

the complex magnitude at the k
th

 angular frequency. Then, x(t) 

in (3) is replaced by (4). The numerical model is obtained by 

multiplying (4) by a set of test functions  −    , k=1,...,N and 

integrating it over a period Tp. Then, the system to be solved is 

composed of N equations 

 

(N+j𝜔kM)   = 

 

  
∫( (𝑡)     ( (𝑡)))  

−    dt 
(5) 

This nonlinear model is solved by using the fixed point 

approach. 

III. APPLICATION  

The HB-FEM-H is applied to a 2D model of two rectangular 

steel sheets. A sinusoidal magnetic flux is imposed 

perpendicularly to the lamination stack with a frequency of 

f=500Hz. In Fig. 2, the steady-state of the magnetic field from 

TS-FEM (reference) with and without homogenization is 

compared to the one calculated by the HB-FEM with and 

without homogenization. The four curves show a good 

agreement. In Fig. 3, the spectrums of the magnetic fields of 

the different formulations are compared to the reference. It 

brings out that the fundamental (500Hz), the third (1500Hz) 

and the fifth (2500Hz) harmonic are dominant. The amplitudes 

at  500Hz, 1500Hz and 2500Hz are very close for the four 

methods. The error of the HB-FEM, TS-FEM-H and HB-

FEM-H and are obtained using the L
2
 relative error norm for 

the steady-state of the magnetic field and are respectively, 

0.1874, 0.3213 and 0.3975. The relative error of  the HB-FEM 

is due to the approximation of  complex Fourier series. While, 

the relative error of the TS-FEM-H is because the 

homogenization method which does not take into account the 

edge effect. Finally, the error of the HB-FEM-H is a 

combinaison  of  two reasons cited above. 

In  terms of  computation times, the speed up of the HB-FEM-

H, HB-FEM and TS-FEM-H are respectively 20, 4 and 2. 

 

 
Fig. 2. Comparison of the magnetic field at Hzf 500 .  

 
Fig. 3. Comparison of the spectrum of the magnetic field at Hzf 500 . 

IV. CONCLUSION 

The HB-FEM-H combined with the fixed point method is used 

to solve a nonlinear magneto-quasistatic problem applied to 

lamination stack. With the studied example, the proposed 

method gives results with a good accuracy compared with a 

classic approach with a significant speed up of 20. The HB-

FEM-H has a relative error of 0.3975 and this because the 

homogenization method used does not take into account the 

edge effect in each sheet. To dicrease this error it is possible to 

take into account the edge effect by coupling the HB-FEM 

with the HB-FEM-H. The HB-FEM can be used near the 

edges of each sheet and the rest of the domain modeled by 

using the HB-FEM-H. The method proposed in [9] enables to 

couple the HB-FEM and a homogenized formulation in order 

to take into account the edge effect in lamination stack in 

linear case. This approach will be extended with HB-FEM and 

HB-FEM-H. 
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